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We address the question of the quantitative relationship between thermodynamic phase transitions and
topological changes in the potential energy manifold analyzing two classes of one dimensional models, the
Burkhardt solid-on-solid model and the Peyrard-Bishop model for DNA thermal denaturation, both in the
confining and nonconfining version. These models, apparently, do not fit �M. Kastner, Phys. Rev. Lett. 93,
150601 �2004�� in the general idea that the phase transition is signaled by a topological discontinuity. We show
that in both models the phase transition energy vc is actually noncoincident with, and always higher than, the
energy v� at which a topological change appears. However, applying a procedure already successfully em-
ployed in other cases as the mean field �4 model, i.e., introducing a map M :v→vs from levels of the energy
hypersurface V to the level of the stationary points “visited” at temperature T, we find that M�vc�=v�. This
result enhances the relevance of the underlying stationary points in determining the thermodynamics of a
system, and extends the validity of the topological approach to the study of phase transition to the elusive
one-dimensional systems considered here.
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I. INTRODUCTION

Phase transitions are a very well understood subject in
statistical mechanics. They have been characterized in many
different ways in the last century and many observables re-
lated to the phase transition �e.g., critical exponents, correla-
tion lengths, etc.� have been computed and measured with
very high accuracy �1�.

Recently, a characterization of phase transitions has been
proposed by Pettini and co-workers �2–5�. These authors
conjectured that, for classical systems defined by a continu-
ous potential energy function V��qi�i=1,…,N�, a thermody-
namic phase transition, occurring at a temperature Tc, is the
manifestation of a topological discontinuity, taking place at a
specific value v�Tc�=N−1�V�q�� �where �·� is the statistical
average at temperature T� of the potential energy function V,
or, more precisely, taking place on the hypersurface 	v
= ��q1 ,… ,qN��RN 
V�q1 ,… ,qN�=Nv�, at v=v�Tc�. The
most striking consequence of this hypothesis is that the sig-
nature of a phase transition is present in the topology of the
configuration space independently on the statistical measure
defined on it.

The changes in the topology are identified through the
Morse theory �6�: topological changes in a manifold like 	v
are related to the presence of stationary points of V �points
for which �V=0� at energy v. However, the precise meaning
of the correlation between topological changes and phase
transitions in the general case is still a open question. On the
one hand there is a theorem of Franzosi and Pettini �5�, as-
serting that, for “smooth, finite-range and confining micro-
scopic interaction potentials V with continuously varying co-
ordinates, …, a topology change of the �	v�v�R at some v� is
a necessary condition for a phase transition to take place at
the corresponding energy … value” �5�. On the other hand,
there are different numerical studies of various models

�3,7–14� �almost all with potentials V not fulfilling the hy-
potheses of the theorem� for which a variety of results has
been obtained, some are in agreement with the “topological
hypothesis” of Pettini and co-workers, others seem to indi-
cate its failure.

It is important to underline that the theorem in Ref. �5�
establishes a necessary condition for a phase transition to
take place. The problem to find sufficiency conditions is still
an open problem, as pointed out also by the proponents of
the hypothesis. This question has been addressed in two re-
cent papers, in Ref. �11� a one-dimensional model, the
Burkhardt model with nonconfining potential �see below�
was investigated, finding that a topological change is present
without a phase transition at finite temperature; in Ref. �14�
the mean field spherical ferromagnet was considered, and it
was found that the same topological changes happen either in
the absence or in the presence of a magnetic field, while in
the latter case no phase transition occurs �it is worth noting,
however, that these two models do not fulfill the hypotheses
of the theorem in Ref. �5��. Moreover, in the thermodynamic
limit, it is likely that, for any finite interval of energy I
= �v1 ,v2�, there is always a stationary point of V�q� with
energy v� I; thus, in the thermodynamic limit a topological
change occurs with probability one in any finite interval of
energy. Most of these topological changes are—obviously—
not related to phase transitions, and indeed it seems that a
topological change must be strong enough to be related to a
thermodynamic phase transition �see Ref. �7� for a detailed
discussion of this point�. An indication coming from the
analysis of the models cited above is that the presence of a
phase transition should be related to the presence of a singu-
larity in the Euler characteristic at a given energy v�. Thus,
basically, the idea of the “topological” approach is that the
phase transitions are correlated to abrupt changes in topo-
logical quantities defined on the stationary points of V �as,
for example, the Euler characteristic�.
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Another open question is the equivalence between the en-
ergies at which phase transition �vc� and change in the topol-
ogy �v�� take place. The original conjecture of Pettini and
co-workers asserts that the two energies “correspond” �let us
call this the strong topological hypothesis�. To our knowl-
edge there is only one system within the hypotheses of the
theorem, the two dimensional �4 model �3�, for which the
equivalence has been numerically established. In the other
two systems with long range interactions, thus out of the
theorem hypotheses �the mean field XY model �7� and the
mean-field k-trigonometric model �8,9��, the equivalence has
been analytically proved. There are, conversely, analytical
results for a different model system �mean field �4 model
�10�� for which the correspondence does not hold, the energy
vc at which phase transition takes place is higher than the
energy v� of the topological singularity �we stress here that
also in this case the hypotheses of the theorem in Ref. �5� are
not fulfilled�.

The latter discussion is of particular importance, not only
in the context of phase transitions, but also in analogy with
glassy systems. These systems are characterized—at the
mean field level—by a dynamical transition taking place at a
given temperature TMCT �or equivalently at energy vMCT�
predicted by mode-coupling theory, and a �hypothesized�
true phase transition at a lower temperature TK �Kauzmann
temperature� or energy vK. From numerical simulations of
Lennard-Jones-type systems, one observes that the dynami-
cal transition is strictly related to the properties of the
saddles visited by the system �15,16�. The concept of “vis-
ited saddles” is quantitatively worked out defining a pseudo-
potential W= 
�V
2 and minimizing it during the dynamic
evolution of the system, thus obtaining a map Mq :q→qs
associating to each equilibrium configuration point q
= �q1 ,… ,qN� a minimum qs of W. When averaged over the
dynamic trajectory one obtains an energy map, M :v→vs.
Absolute minima of W �having W�qs�=0� correspond to sta-
tionary points �saddles and minima� of V. We note that the
presence of local minima of W, with W�qs��0 but small
�corresponding to inflection directions in V profile�, does not
affect the result �17�, the order of visited saddles �number of
negative eigenvalues of the Hessian matrix of V� extrapolates
to zero at TMCT, and the energy of saddles stays always be-
low the instantaneous energy. Moreover the true thermody-
namic transition is achieved when the number of visited sta-
tionary points of order zero �minima of V� grows less than
exponentially with the system size �in the glassy terminology
when the “configurational entropy” or “complexity” goes to
zero�. Solvable mean field spin-glass models �p spins�, which
manifest the same phenomenology of structural glasses, cor-
roborate these findings in an analytical way �18�. Then, what
emerges from glassy systems, is the great importance of the
underlying stationary points in the description of the various
transitions �dynamical and thermodynamical� taking place in
these systems. It is worth noting, however, that the consis-
tency of this picture beyond mean field is still a matter of
debate �19�, and that the definition of the map M is not
unique also at the mean field level, different definitions giv-
ing similar but not quantitatively equal results �10�.

One can argue, in line with the “topological” approach to

phase transitions, that also for nonglassy systems the concept
of underlying stationary points continues to be useful. It is
important to emphasize that, in the study of the glass transi-
tion, is the discontinuity of the average density number of
underlying stationary points that marks the dynamical tran-
sition at TMCT. Driven by this observation, we recently pro-
posed that the map M :v→vs must be applied in order to
spot the phase transition, i.e., if a topological discontinuity
exists at energy v�, the phase transition is expected at an
energy vc such that M�vc�=v�. This has been proved to
work �at least approximately� in those cases �e.g., the mean
field �4 model� where the original “strong topological hy-
pothesis” �i.e., coincidence between vc and v�� failed. It is
worth pointing out that those cases where it has been proved
that vc�v� do not constitute counterexamples for the appli-
cation of the map M, as in all these cases it turns out that vc
is a fixed point for the map, i.e., M�vc�=vc. In conclusion,
for all the cases investigated so far �7–10�, it results that
whenever a phase transition �including also “dynamic” tran-
sitions as the glass transition in LJ liquids �15,16� and p-spin
systems �18�� is present at a certain energy vc, this transition
is signaled by a discontinuity in the topology, specifically in
the Euler characteristic or in the complexity, at an energy v�

such that M�vc�=v�. At variance with the original �strong�
topological hypothesis, where it was supposed that vc=v�,
we will refer to the latter conjecture as the weak topological
hypothesis. Note that the weak topological hypothesis, at
variance with the strong topological hypothesis, depends on
the statistical measure, as the map M :v→vs is defined
through an average over the dynamical trajectory �or,
equivalently, over the statistical measure�. We will discuss
this point in detail in the following.

Two recent papers �11,12� addressed the question con-
cerning the relationship between phase transitions and topol-
ogy in one-dimensional models. Kastner �11� studied two
versions of a solid-on-solid model, one showing a phase
transition at finite temperature and the other not; he found
that both models exhibit the same topological change, thus
concluded towards an “unattainability of a purely topological
criterion for the existence of a phase transition” �11�. Grinza
and Mossa �12� considered the Peyrard-Bishop model
�20,21�, which exhibits both a phase transition and a change
in the topology, but in this case vc and v� are not coincident
�22�. These papers contributed to extend the analyzed cases
for the understanding of necessary and sufficient conditions
for the topological hypothesis. However, they seem to reach
contradictory results, one supporting and the other falsifying
the topological hypothesis, even if the investigated models
share many similarities.

The aim of this work is to try to clarify this apparent
inconsistency with regard to what has been discussed above.
In particular, we reanalyze the model investigated by Kastner
and by Grinza and Mossa. As a result of this study �i� ana-
lyzing the Peyrard-Bishop model �PB� �20,21� we numeri-
cally show that the two energies, although different vc�v�,
satisfy the “weak topological hypothesis,” i.e., M�vc�=v�.
We also investigate a slight modification of the PB model
�allowing nonconfined motion of the variables�, where we
are able to study the same quantities in absence of a thermo-
dynamic phase transition at finite temperature, again finding
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results in agreement with the “weak topological hypothesis.”
�ii� Analyzing the Burkhardt model we introduce a further
parameter defining the position of the pinning potential, that
can be moved from the origin, i.e., fully confining potential,
to infinity, fully nonconfining potential. We found that the
phase transition actually exists for all the position of the
pinning potential, and its critical temperature goes continu-
ously to infinity as the pinning potential position goes to
infinity. Moreover, we found that also the generalized
Burkhardt model falls into the class of systems that satisfy
the “weak topological hypothesis,” i.e., M�vc�=v�. As the
position of the pinning potential is moved toward infinity, the
energy vs�T� of the “underlying saddles” tends to reach the
energy v� at higher temperature; when the nonconfining limit
is reached, vs�T��v� for all T. The topological singularity is
visited only for T→� and this is the reason why the phase
transition is not observed, i.e., Tc→�.

The present findings support the idea that also in the case
of one-dimensional models, the relevant topological quantity
related to a phase transition is obtained from underlying sta-
tionary points obtained from the map M. As we already
noted, the choice of the map M is not univocal, we have
chosen the one obtained through W �with some ad hoc modi-
fications�, however different choices are possible �we men-
tion here, for example, the map obtained using Euclidean
distances in configuration space �10,18��. The robustness of
this conclusion with respect to the possible different choices
of the map M is still an open question which goes beyond
the scope of this paper.

II. THE MODELS

The one-dimensional models we study are all defined by
the Hamiltonian H=	i=1

N pi
2 /2m+V��q�i=1,…,N� �m is the mass

of each particle�, where V is the potential energy. We con-
sider two different classes of models. The first one, intro-
duced by Burkhardt �23� as a model for localization-
delocalization transition of interfaces, is defined by the
potential energy V�1�,

V�1���q�i=1,…,N� = 	
i=1

N

K
qi+1 − qi
 + 	
i=1

N

Vp
�1��qi� , �1�

where K measures the strength of the force between neigh-
boring pairs, Vp

�1��q� is the on-site pinning potential, and pe-
riodic boundary conditions are assumed qN+1�q1. We
choose for Vp

�1��q� the following form:

Vp
�1��q� = �

+ � for q � 0,

0 for 0 � q � L ,

− U0 for L � q � L + R ,

0 for q � L + R ,

 �2�

that generalizes the original form in Ref. �23� introducing a
parameter L that gives the position of the pinning potential �a
square well of depth U0 and width R, see Fig. 1� from the
edge of the system. The case with L=0 coincides with the
original Burkhardt confining model, while the nonconfining
case is retrieved in the L→� limit.

The models of the second class are defined by the poten-
tial energy V�2� and V�3� of the form

V�2,3���q�i=1,…,N� = 	
i=1

N
K

2
�qi+1 − qi�2 + 	

i=1

N

Vp
�2,3��qi� . �3�

We consider two different versions of this model, one de-
fined by the on-site Morse potential, introduced by Peyrard
and Bishop as a simple model for DNA thermal denaturation
�20,21� �PB model�,

Vp
�2��q� = U0��e−q/R − 1�2 − 1�; �4�

the other is a symmetric version of the former �SPB model�

Vp
�3��q� = U0��e−
q
/R − 1�2 − 1� , �5�

a slight modification of PB model that allows for a noncon-
fined motion of the variables �see Fig. 2�. We note that the
introduction of the modulus in Eq. �5� does not introduce
discontinuities up to the second derivative of the potential.
The quantities U0 and R determine respectively, the energy
and the length scales of the on-site potential �in the following
all quantities will be reported in U0 and R units�. We further

FIG. 1. Sketch of the on-site pinning potential Vp
�1��q� for a

given choice of the control parameter L /R.

FIG. 2. Plots of the on-site pinning potentials Vp
�2��q� �full line�

and Vp
�3��q� �dashed line�.
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choose m=1. In all three cases a parameter of the Hamil-
tonian is related to the strength of the interparticles interac-
tions �K� and, for the case of V�1� a second parameter is the
position of the pinning potential L.

Specifically, the relevant quantity defining the relative
weight of the on-site with respect to interparticle potentials is
the dimensionless ratio 	=KR /U0 or 	=KR2 /2U0 for the po-
tential models �1� or �2� and �3�, respectively, while the po-
sition of the pinning potential is given by 
=L /R for the
potential model �1�.

The generalized Burkhardt model has been treated ana-
lytically, while the Peyrard-Bishop models are studied nu-
merically. In the latter cases we performed isothermal mo-
lecular dynamics simulations using Nosé-Hoover thermostat
at different temperatures for systems with N=500 degrees of
freedom with periodic conditions qN+1=q1. We studied dif-
ferent values of the control parameter 	, as an example the
results are reported for 	=0.05 and 0.5, all the other 	 values
give results in qualitative agreement with the two reported
examples.

III. BURKHARDT MODEL

A. Thermodynamics

The thermodynamics of the Burkhardt model has been
known for many years �23� for both the 
=0 and 
=� cases.
The method of solution is briefly outlined below.

The determination of the thermodynamic of systems de-
scribed by a potential function of the form

V��q�i=1,…,N� = 	
i=1

N

K
qi+1 − qi
 + 	
i=1

N

Vp�qi� , �6�

i.e., similar to the case �1� �Eq. �1��, goes through the exploi-
tation of the transfer matrix technique. Indeed, the configu-
rational partition function Z is given by

ZN =� dq1 ¯ dqN e−�V��q�i=1,…,N�, �7�

that, defining the transfer “matrix”

T�x,y� = e−�K
x−y
e−��Vp�x�+Vp�y��/2, �8�

can be written as

ZN =� dq1 ¯ dqN�
i=1

N

T�qi,qi+1� , �9�

recalling that qN+1�q1. With this notation, the �configura-
tional� free energy density

f = −
1

�N
log�ZN� �10�

in the thermodynamic limit is promptly written as

f = −
1

�
log�max��̄�� , �11�

where �̄ is the set of eigenvalues of the transfer matrix, i.e.,
the eigenvalues of the integral equation

� dy T�x,y���y� = ���x� . �12�

The latter equation, with the substitution


�x� = e�Vp�x�/2��x� , �13�

turns out to be

� dy e−�K
x−y
e−�Vp�y�
�y� = �
�x� . �14�

The next step is performed by noticing that the operator
�−d2 /dx2+�2K2� applied to exp�−�K
x−y
� produces a delta
function,

�−
d2

dx2 + �2K2�e−�K
x−y
 = 2�K��x − y� , �15�

thus by applying the previous operator to the integral equa-
tion �14�, it can be transformed in a Schrödinger-type differ-
ential equation,

�−
d2

dx2 + �2K2 −
2�K

�
e−�Vp�x��
�x� = 0. �16�

This equation must be solved with the conditions that �i� the
“eigenfunction” 
�x� was normalizable, and, �ii� the bound-
ary condition �implicit in Eq. �14�� 
��0� /
�0�=�K was ful-
filled. In summary, the calculation of the thermodynamic sys-
tem defined by the potential energy of the form in Eq. �1� is
reduced to the solution of a Schrödinger-type differential
equation and, in particular, to the finding of the largest ei-
genvalue of the original integral equation �14�. In general, as
the eigenvalues are continuous and smooth functions of the
parameters �among which the temperature�, no phase transi-
tions are expected unless the two largest among them cross
each other.

B. The �=0 case

Let us now apply the procedure to the potential function
in Eq. �1� for the case 
=0. We do not report the details of
the calculation, as they are based on standard techniques for
solving the Schrödinger equation in quantum mechanics
�24�; in summary the “eigenvalues” � are determined by the
equation

z��� = �K �17�

with

z��� =
f1�P,Q�sin�QR� − f2�P,Q�cos�QR�
f3�P,Q�sin�QR� + f4�P,Q�cos�QR�

, �18�

having defined

f1�P,Q� = Q2,

f2�P,Q� = PQ ,
�19�

f3�P,Q� = P ,
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f4�P,Q� = Q ,

and

Q��� =�2�K

�
e�U0 − �2K2,

P��� =��2K2 −
2�K

�
. �20�

The only possibility for the function z��� to be real �con-
dition required for Eq. �17� to have a solution� is that P was
real �if Q becomes imaginary, z��� is still real�, thus there is
a solution to Eq. �17� only if P is real. Therefore, when P
vanishes, the eigenvalues � disappear �more specifically, the
eigenvalues of the discrete spectrum disappear, and only
those of the continuum spectrum remain�, and the �configu-
rational� free energy is discontinuous. For each temperature,
the condition P���=0 is fulfilled for a “critical” �, given by

�c =
2

�K
. �21�

Thus, the equation for the largest eigenvalue at the “critical”
point is given by z��c�=�cK, or

�e�cU0 − 1 tan��cKR�e�cU0 − 1� = 1, �22�

which gives us the required equation for the critical �inverse�
temperature �c. This equation can be rearranged, introducing
the control parameter 	=KR /U0, as

	 =
1

�cU0

1
�e�cU0 − 1

arctan� 1
�e�cU0 − 1

� . �23�

The plot of the critical temperature �in reduced units kBT /U0�
as a function of 	 is reported as the full line in Fig. 3.

The phase transition is of the localization-delocalization
type. The particles, kept together by the K
x−y
 term of the
potential, for T�Tc are pinned close to the square well,
while, for T�Tc are delocalized in the q axis.

A simple calculation leads to the value of the critical en-
ergy vc �the equilibrium energy v�T� at the transition point
vc=v�Tc��. From Eq. �11�, we have

v�T� =
���f�

��
= −

�����
����

, �24�

where ���� is the solution of Eq. �17�. Close to the critical
point, ����=2/�K, thus ����� /����=1/� and

vc = kBTc �25�

independently from the value of 	.

C. The �Å0 case

The calculation for the case of generic 
 values is quite
similar to the previous one. Also in this case, the eigenvalues
� are determined by an equation like Eq. �17�, z���=�K,
with z��� again given by Eq. �18� and with the fn�P ,Q�
functions �n=1, …,4� given by

f1�P,Q� = P�Q2 cosh�PR
� − P2 sinh�PR
�� ,

f2�P,Q� = P2Q exp�PR
� ,
�26�

f3�P,Q� = �P2 cosh�PR
� − Q2 sinh�PR
�� ,

f4�P,Q� = PQ exp�PR
� .

Obviously, Eqs. �26� recover Eqs. �20� in the 
→0 limit. The
same considerations on the reality of P��� reported above
apply to Eq. �26�. Thus the condition P���=0 define the
critical value of the eigenvalue, �c=2/�K, and the equation
for the critical temperature �z��c�=�cK� becomes

�e�cU0 − 1 sin��cKR�e�cU0 − 1��cos��cKR�e�cU0 − 1�

− �cKR
�e�cU0 − 1 sin��cKR�e�cU0 − 1��−1 = 1.

�27�

Similar to the 
=0 case, this equation can be rearranged,
introducing the control parameter 	, as

	 =
1

�cU0

1
�e�cU0 − 1

arctan� 1
�e�cU0 − 1

1

1 + �cU0	

� . �28�

At variance with Eq. �23�, this equation cannot be cast in the
form 	=	��c�, thus it must be solved numerically to plot the
critical temperature as a function of the control parameter 	.
This plot is reported in Fig. 4 for different values of 
.

As can be observed in Fig. 4, on increasing 
, i.e., on
displacing the position of the square well towards high value
of the coordinate, the critical temperature, for a given 	
value, increases, expanding the amplitude of the “cold” �lo-
calized or pinned� phase. This can be better seen in Fig. 5,
where the 
 dependence of the critical temperature is re-
ported for some values of 	. We conclude this section notic-
ing that the phase transition actually exists for all the value
of 
, and in the limit of 
→�, the critical temperature goes
without discontinuities to infinity. Therefore, we are lead to
conclude that the model investigated in Ref. �11� to demon-

FIG. 3. Full line, critical temperature �in reduced units kBTc /U0�
as a function of the control parameter 	 from Eq. �23� for the 

=0 case. Dashed line, temperature TJ �in reduced units� at which the
“underlying saddle” jumps from minimum to saddle as a function of
	 �see Sec. V B�.
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strate the unattainability of a purely topological criterion for
the existence of a phase transition is a “borderline” model, in
which the phase transition can be thought to be present at “T
infinity” �even though the precise meaning of this statement
is not well defined�. Then, to the same topology �as we will
see in the next section, the topology of the potential function
in Eq. �2� does not depend on the value of 
� always corre-
sponds to a phase transition.

To discuss the question of the coincidence �or not� of the
critical energy with the topological discontinuity, we need to
calculate vc�	 ,
�. Following the same argument reported for
the case 
=0 we conclude that the critical potential energy
depends on 	 and 
 only through Tc ,vc=kBTc. As an ex-
ample, in Fig. 6 we report the caloric curve v�T� as a func-
tion of the inverse temperature for different 
 values and for
	=1. For all the 
 values, on the low-� side the curves end at
the points ��c ,vc�; these points are aligned along the vc��c�
line �thick dotted line� given by vc��c�=1/�c.

D. Topology

The analysis of the topological properties of the
Burkhardt model is reported by Kastner in Ref. �11�. He
analyzed only the two limiting cases of confining and non-
confining models, corresponding in our notation to 
=0 and

=�, respectively. He found that a topology change is
present in both cases, even if not really equal in “strength.”
The value of the potential energy at which the topological
change appears is v�=0, irrespective of the considered
model. One can easy generalize the above analysis to the
general case with arbitrary 
, and conclude that the topologi-
cal change is always located at energy v�=0. It is worth
noting that the energy at which topological change appears is
lower than the thermodynamic transition energy, vc�v� �see
Fig. 6�. We will further discuss this issue in Sec. VI, after
having described the thermodynamics and topology of the
PB and SPB models.

IV. PEYRARD-BISHOP MODEL

A. Thermodynamics

The thermodynamics of the Peyrad-Bishop model �de-
fined in Eqs. �3� and �4�� can be studied using transfer matrix
techniques, as the Burkhardt model described in the preced-
ing section. However, in this case approximated methods
must be considered in order to obtain a corresponding
Schrödinger-type differential equation. In the region 	�1
and temperature window U0�kBT�	U0 the classical statis-
tical mechanics problem is mapped to the quantum Morse
oscillator problem �25,26�. Similarly to the case of Burkhardt
potential, the presence of a second order phase transition for
the Peyrad-Bishop model is signaled by the bounded-
unbounded transition of the lower state in the corresponding
quantum problem. In the above range of 	 and T, Peyrard
and Bishop obtained an analytical expression for the transi-
tion temperature kBTc /U0=4�	 and transition energy vc /U0
=kBTc /2U0=2�	. For generic �	 ,T� values, only numerical

FIG. 4. Critical temperature �in reduced units kBTc /U0� as a
function of the control parameter 	 from Eq. �28� for the indicated

 value, 
=0 �full line�, 0.5 �dashed line�, 1.5 �dotted line�, 3.5
�dashed-dotted line�, and 7.5 �dashed-dotted-dotted line�.

FIG. 5. Critical temperature �in reduced units kBTc /U0� as a
function of the control parameter 
 from Eq. �28� for the indicated
	 value, 	=2 �full line�, 1 �dashed line�, 0.5 �dotted line�, 0.25
�dashed-dotted line�.

FIG. 6. Inverse temperature dependence �in reduced units �U0�
of the equilibrium potential energy for 	=1 and for the indicated 

value, 
=0 �full line�, 0.5 �dashed line�, 1.5 �dotted line�, 3.5
�dashed-dotted line�, and 7.5 �dashed-dotted-dotted line�. The thick-
dotted line represents the � dependence of the potential energy in
the high temperature phase.
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results can be used to infer the existence and location of a
phase transition. In Fig. 7 we report the temperature depen-
dence of the potential energy per particle v=V /N �full sym-
bols� of the PB model for two different values of 	, 0.05
�upper panel� and 0.5 �lower panel�. Also reported in the
figure are the energy vc �dotted-dashed line� and temperature
Tc �full line� of the phase transition point, vc /U0�0.61 and
kBTc /U0�1.22 for 	=0.05, vc /U0�1.59 and kBTc /U0
�3.20 for 	=0.5. Dashed lines are the T dependence of the
potential energy in the high T phase, v�T�=kBT /2.

B. Topology

The topology of the Peyrard-Bishop model is studied in
the paper of Grinza and Mossa �12�. A topological change is
found at the energy value v�=0, corresponding to a topologi-
cal change in the hypersurfaces �v varying v, from a close
hypersurface for v�v� to an open one for v�v� �12�. In Fig.
7 the value of v� is indicated by a horizontal dotted line. We
note that, also in this case, the topological discontinuity is
lower in energy than the thermodynamic one, vc�v�.

V. SYMMETRIC PEYRARD-BISHOP MODEL

A. Thermodynamics

The symmetric Peyrard-Bishop model defined by Eqs. �3�
and �5� does not exhibit phase transition at finite T. This can
be viewed from the fact that there is always a bound state in
the corresponding quantum problem, in analogy with the
nonconfined Burkhardt model �23,27�. In Fig. 8 the same

quantities as in the PB case are reported for the SPB model,
energy v �full symbols� for 	=0.05 �upper panel� and 	
=0.05 �lower panel�. It is evident in this case the absence of
a phase transition at finite T �in the T-range investigated�.

B. Topology

Following a similar argument as in Ref. �11�, one can see
that also in the SPB case one has a topological change at
exactly the same energy level as in the PB model v�=0 �even
if not identical in strength to the previous one�. We refer to
the papers in Refs. �11,12� for a more detailed discussion of
the topology. In Fig. 8 the value of v� is indicated by a
horizontal dotted line.

VI. UNDERLYING SADDLES

In this section we study the properties of the stationary
points visited by the systems. The concept of “underlying
saddles” was first introduced in the study of glassy disor-
dered systems �15,16,18� to better understand the topological
counterpart of the dynamic transition taking place in these
systems. Recently, it has been applied also in the analysis of
models that exhibit thermodynamic phase transitions, in or-
der to emphasize the role of topological changes at the “un-
derlying saddles” energy in driving the phase transition
�8–10�.

Here we apply the same methodology to investigate the
one-dimensional systems introduced before. Let us start with
the models having a continuous potential energy function,
the PB and SPB models, which allow for the usual definition
of stationary points. At the end of the section we will extend
the argument to the discontinuous case of the Burkhardt
model.

FIG. 7. Temperature dependence �in reduced units kBT /U0� of
the equilibrium potential energy v �full symbols� and energy vs of
underlying saddles �open symbols� for the PB model defined by Eq.
�4� with 	=0.05 �upper panel� and 	=0.5 �lower panel�. Also indi-
cated in the figure are the values of topological change energy v�

�horizontal dotted lines�, phase transition energy vc �horizontal
dotted-dashed lines� and transition temperature Tc �vertical full line�
for 	=0.05 �v� /U0=0, vc /U0�0.61, and kBTc /U0�1.22� and for
	=0.5 �v� /U0=0, vc /U0�1.59, and kBTc /U0�3.20�. Dashed lines
are the T dependence of the potential energy in the high T phase,
v�T�=kBT /2.

FIG. 8. Temperature dependence �in reduced units kBT /U0� of
the equilibrium potential energy v �full symbols� and energy vs of
underlying saddles �open symbols� for the SPB model defined by
Eq. �5� with 	=0.05 �upper panel� and 	=0.5 �lower panel�. Also
indicated in the figure is the value of the topological change energy
v� /U0=0 �dotted line� for both cases.
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A. Peyrard-Bishop and symmetric Peyrard-Bishop models

There are only two stationary points in the potential en-
ergy hypersurface of both models, a minimum located at q1
=q2= ¯ =qN=0 and a saddle �with degenerate Hessian ma-
trix� at q1=q2= ¯ =qN=� �12�. In order to associate one of
the two stationary points to each instantaneous configuration
of the system, we used a similar trick as in the analysis of
glassy systems �15� or mean-field models �8–10�. In the lat-
ter one minimized the pseudopotential W= 
�V
2 during the
dynamic evolution at different temperatures, so introducing a
map from equilibrium energy levels to saddle energy levels,
M :v→M�v��vs. Due to the peculiarity of the present
models, where the saddle point is “infinitely” far from each
equilibrium configuration, we decided to apply the W mini-
mization method in a two step procedure, �i� first we mini-
mized the Wint quantity defined using the interaction poten-
tial part of V ,Wint= 
�Vint
2, where Vint=	i=1

N �K /2��qi+1

−qi�2; �ii� then we minimized the Wp defined using the on
site potential Wp= 
�Vp

�2,3�
2. This procedure ensures that the
point reached is a true stationary point, i.e., the minimum or
the saddle. Obviously, this is a quite arbitrary definition of
basins of attraction of stationary points. As said in the intro-
duction, the robustness of the results with respect to the pos-
sible choices of definition of a saddle basin of attraction is
still an open problem.

In Fig. 7 the temperature dependence of the energy vs
�open symbols� of underlying saddles is shown for the case
	=0.05 �upper panel� and 	=0.5 �lower panel� in the PB
model. The remarkable fact is that at Tc �vertical full line in
Fig. 7� the identity vs=v� holds. The map M�v� is shown for
the PB model �open symbols� in Fig. 9 for the two cases 	
=0.05 �upper panel� and 	=0.5 �lower panel�. One observes
that, as pointed out, one has M�vc�=v� for both 	 values.
The fact that vs�T� in Fig. 7, as well as M�v� in Fig. 9, has
a “smooth” transition between its low T �or v� and high T

�high v� regions is most likely due to a finite size effect �N
=500 here� and both vs�T� and M�v� will probably tend
towards a step function in the thermodynamic limit. The pre-
vious finding indicates that the relevant quantity to consider
when we are looking for topological changes related to a
phase transition is the underlying stationary point energy,
obtained trough a map from the critical level vc. It is worth
noting that the map M is constant �M�v�=v�� for a broad
range of values, also below vc, at variance with other cases
where around the transition point the properties of visited
saddles change �7–10�. One can conjecture that the flatness
of M�v� is a pathology of these one-dimensional models,
that have a number of stationary points that is not extensive
in N �actually there are only two stationary points�.

In Fig. 8 we report the same quantities vs as before �open
symbols�, now for the SPB model, with 	=0.05 �upper
panel� and 	=0.5 �lower panel�. In this case no phase tran-
sition is present, and indeed the topological singularity is
never visited, vs�T��v� for each finite temperature �T���.

B. Burkhardt model

To apply the analysis of the preceding section also to the
Burkhardt model, one must find a suitable definition of
“saddles” and of “basin of attraction of a saddle” for a dis-
continuous potential. One possibility is the following: we
first minimize the interaction potential Vint=	i=1

N K
qi+1−qi
,
which is equivalent to set all the qi equal to the center of
mass coordinate q̄=N−1	iqi. If q̄ lies in the well of the po-
tential, i.e., q̄� �L ,L+R�, we will associate the “minimum”
to the initial configuration, otherwise we will associate it to
the “saddle” �we use this terminology by analogy with the
PB model�. It is clear that the average energy of the “under-
lying saddles” is simply the average of the on-site energy of
the center of mass coordinate,

vs�T� = �Vp
�1��q̄��T. �29�

In the thermodynamic limit the center of mass q̄ is peaked
around its mean value and then we can substitute the right-
hand side of Eq. �29� with Vp

�1���q̄��, a quantity that can be
explicitly computed. To determine �q̄� we can use the distri-
bution probability 
��x�
2, where ��x�=e−�Vp�x�/2
�x� and

�x� is the eigenfunction of the transfer matrix operator cor-
responding to the maximum eigenvalue �23� �see Sec. II A�.
We note that the saddle energy vs�T� is a step function,
equals the minimum energy −U0 when �q̄� lies inside the
square well and equals the saddle energy 0 otherwise. The
temperature TJ at which the visited “underlying saddle”
jumps from minimum to saddle is shown in Fig. 3 �dashed
line� as a function of the parameter 	 for the 
=0 case. It is
worth noting that the temperature TJ lies always below the
thermodynamic transition temperature Tc �in analogy with
the PB model, see Fig. 7�. The same happens for all values of
	. Therefore, also for the Burkhardt case, at the transition
temperature Tc the “underlying saddles” lie at an energy
equal to the topological discontinuity energy v�, i.e.,
M�vc�=v�.

FIG. 9. Map M :v→vs defined minimizing the pseudopotential
W= 
�V
2 in the PB and SPB models for 	=0.05 �upper panel� and
	=0.5 �lower panel�. Also reported are the corresponding v� �dotted
lines� and vc �dotted-dashed lines� for 	=0.05 �v�=0,vc�0.61� and
	=0.5 �v�=0,vc�1.59�, evidencing the identity M�vc�=v�.
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VII. CONCLUSIONS

Studying two particular one-dimensional models dis-
cussed in the recent literature �11,12� �Burkhardt model in
the confining and nonconfining version, Peyrard-Bishop
model and its nonconfining counterpart�, we have focused on
the relationship between phase transitions and topological
changes, recently proposed in the literature �2–5�. In these
models, a topological singularity at a given energy value
v��=0� is always found; however, �i� in the confining version
a phase transition is found but the critical energy is vc�v�

�12�; �ii� in their nonconfining version there is no phase tran-
sition at any finite temperature �11�.

These results generated confusion as �i� was interpreted as
a confirmation of the strong topological hypothesis of Pettini
et al. �22� while �ii� was considered as an evidence for the
unattainability of a purely topological criterion for detecting
phase transitions, although demonstrated only for the par-
ticular nonconfining one-dimensional models.

Exploiting the concept of “underlying stationary points”
defined through a generalization of the methods used in the
glassy literature �minimization of the pseudopotential W
= 
�V
2�, we have defined a map M :v→vs from energy
level v of V to stationary points, with energy vs. We have
shown that �i� in the confining case, where the phase transi-
tion is present, one has M�vc�=v�, in agreement with the
weak topological hypothesis; �ii� in the nonconfining case,
where the phase transition is not present at finite temperature
�as the transition temperature goes continuously to infinity
when the confining wall is removed� the energy of the un-
derlying saddles is always below the topological singularity,
i.e., vs�T��v� , ∀T; the singular point v� is indeed visited for
T→�, consistently with the observation that the critical tem-
perature is “infinite” in the nonconfining case.

The weak topological hypothesis appears as a possible

framework to fit the results that recently appeared in the
literature on all the different models investigated so far.
Within this hypothesis three different scenarios are possible.

�1� If there is no topological singularity v�, a phase tran-
sition is not possible; this is consistent with the hypothesis
of Pettini et al., topological singularities are necessary
conditions for a phase transition to take place.
�2� If there is a topological singularity at energy v�, a
phase transition is also present if and only if there exist a
temperature Tc such that vs�Tc�=v� �or equivalently an
energy vc such that M�vc�=v��.
The above findings seem to indicate that, at least for the

particular models investigated, a sufficiency criterion for the
phase transition to take place requires the introduction of a
statistical measure, thus, we believe that the statement of
Kastner �11� concerning the unattainability of a purely topo-
logical criterion for detecting phase transitions is indeed cor-
rect, even though in Ref. �11� it has been derived using a
“borderline” model �see Sec. III C�.

Let us conclude with two remarks, �i� as already stated,
the definition of the map M is not unique, different defini-
tions giving �slightly� different results. Thus, the weak topo-
logical hypothesis contains in its formulation an ambiguity
and must be regarded only as a practical tool, at least at this
stage of comprehension; �ii� nevertheless, we hope that this
approach can be of interest for the numerical investigation of
systems of “mesoscopic” size �e.g., proteins and large mol-
ecules�, i.e., such that the number of degrees of freedom is
not large enough to allow to detect the presence of a phase
transition using standard techniques.
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